ВИКОРИСТАННЯ МЕТОДУ ЯМР-СПЕКТРОСКОПІЇ ДЛЯ ДОСЛІДЖЕННЯ ІДЕНТИФІКАЦІЇ ТА ФАЛЬСИФІКАЦІЇ МЕДУ
Анотація
Анотація. У статті розглядаються питання ідентифікації та фальсифікації меду методом ЯМР-спектроскопії. Мед – натуральна солодка речовина, що виробляється Apis mellifera. Він складається в основному з різних цукрів, переважно фруктози та глюкози, а також інших речовин, таких як органічні кислоти, ферменти та тверді частинки, отримані під час медозбору. Основною хімічною складовою меду є вуглеводи, які складають до 95% сухої ваги, причому фруктоза (38%) і менша частина глюкози (31%) є основними цукровими компонентами серед 22 різних цукрів, присутніх у складі меду. Географічне та ботанічне походження є факторами, які диктують ціну на цей широко споживаний натуральний продукт. Економічна вигода призвела до того, що мед став легкою мішенню для фальсифікації, включаючи навмисне неправильне маркування походження меду, додавання води та цукру до меду, а також годування бджіл надмірною кількістю штучного сиропу в період збору нектару. Таким чином, ідентифікація меду є нагальною проблемою. Методології ядерного магнітного резонансу (ЯМР) широко визнані як важливий інструмент для аналізу харчових продуктів, оскільки вони дозволяють вивчати як хімічний склад, так і молекулярну динаміку харчових матриць. Мед є дуже лабільною системою, що піддається біохімічним і хімічним змінам, а ЯМР-спектроскопія є потужним методом для моніторингу цих змін.
Посилання
2. Missio da Silva P., Gauche C., Gonzaga L.V., Costa A.C.O., Fett R. Honey: chemical composition, stability and authenticity. Food Chemistry. 2016. Vol. 196. P. 309–323.
3. Rutledgec D.N. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chemistry. 2015. Vol. 189. P. 60–66.
4. Zak N. Honey market in the opinion of young consumers. Handel wewnętrzny. 2017. Vol.1. No. 366. P. 424–438.
5. Spiteri C., Lia F., Farrugia C. Determination of the Geographical Origin of Maltese Honey Using 1H NMR Fingerprinting. Foods. 2020. Vol. 9. N.10. P. 1455. https://doi.org/10.3390/foods9101455
6. Won S.R., Lee D.C., Ko S.H., Kim J.W., Rhee H.I. Honey major protein characterization and its application to adulteration detection. Food Research International. 2008. Vol. 41. No 10. P. 952–956.
7. Ribeiro R. R., Mársico E. T., Carneiro C., Guerra Monteiro M.L., Júnior C.C., Oliveira de Jesus E.F. Detection of honey adulteration of high fructose corn syrup by Low Field Nuclear Magnetic Resonance (LF 1H NMR). Journal of Food Engineering. 2014. Vol. 135. P. 39–43 http://dx.doi.org/10.1016/j.jfoodeng.2014.03.009
8. Zhang G., Abdulla W. On honey authentication and adulterant detection techniques. Food Control. 2022. 138. 108992. https://doi.org/10.1016/j.foodcont.2022.108992
9. Bogdanov S., Ruoff K., Oddo L.P. Physicochemical methods for the characterisation of unifloral honeys: A review. Apidologie. 2004. Vol. 35. P. 4–17.
10. Ruiz-Matute A.I., Brokl M., Soria A.C., Sanz M.L., Martınez-Castro I. Gas chromatographicmass spectrometric characterisation of tri- and tetrasaccharides in honey. Food Chemistry. 2010. Vol. 120. No 2. P. 637–642.
11. Zabrodska B., Vorlova L. (2014). Adulteration of honey and available methods for detection – a review. Acta Vet. 2014. Vol. 83. P. 85–102. https://doi.org/10.2754/avb201483S10S8512. Tian Y., He Q., Chen X., Wang S. Nuclear magnetic resonance spectroscopy for food quality evaluation. Evaluation Technologies for Food Quality. 2019. P. 193-217. doi.org/10.1016/B978-0-12-814217-2.00011-1
13. Kuballa T., Brunner T.S., Thongpanchang T., Walch S.G., Lachenmeier D.W. Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science. 2018. Vol. 19. P. 57-62. https://doi.org/10.1016/j.cofs.2018.01.007
14. Jamroz M.K., Paradowska K., Zawada K., Makarova K., Kazmierski S., Wawer I. 1H- and 13C-NMR-based sugar profiling with chemometric analysis and antioxidant activity of herbhoneys and honeys. Journal of Agricultural and Food Chemistry. 2014. Vol. 94. P. 246–255.
15. Padovan G., Jong D., Rodrigues L., Marchini J. Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio. Food Chemistry. 2003. Vol. 82. P. 633–636. https://doi.org/10.1016/S0308-8146(02)00504-6
16. Donarski J. A., Jones S. A., Harrison M., Driffield M., Charlton A. J. Identification of botanical biomarkers found in Corsican honey. Food Chemistry. 2010. Vol. 118. No. 4. P. 987–994. https://doi.org/10.1016/j.foodchem.2008.10.033
17. Kortesniemi M., Slupsky C. M., Ollikka T., Kauko L., Spevacek A. R., Sjovall O., Yang B., Kallio, H. NMR profiling clarifies the characterization of Finnish honeys of different botanical origins. Food Research International. 2016. Vol. 86. P. 83-92. https://doi.org/10.1016/j.foodres.2016.05.014
18. Hornby S., Benn J., Vinkenoog R., Goldberg S., Pound M. J. Methods in melissopalynology: colour determination of pollen pellets for colour vision deficient individuals. Palynology. 2022. Vol. 46. P.1-7. https://doi.org/10.1080/01916122.2022.2062476
19. Aronne G., De micco V. Traditional melissopalynology integrated by multivariate analysis and sampling methods to improve botanical and geographical characterisation of honeys. Plant
Biosystems. 2010. Vol. 144. P. 833-840. https://doi.org/10.1080/11263504.2010.514125
20. Schievano E., Peggion E., Mammi S.1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. Journal of Agricultural and Food Chemistry. 2010. Vol. 58. No 1. P. 57–65.
21. Kazalaki A., Misiak M., Spyros A., Dais P. Identification and quantitative determination of carbohydrate molecules in Greek honey by employing 13C NMR spectroscopy. Anal. Methods. 2015. Vol. 7. P. 5962–5972.
22. Sereia M.J., Março P.H., Perdoncini M.R.G., Parpinelli R.S., de Lima E.G., Anjo F.A. Techniques for the Evaluation of Physicochemical Quality and Bioactive Compounds in Honey; Anjo, F., Ed.; IN TECH: London, UK, 2017; pp. 194–214.
23. Cagliani L.R., Maestri G., Consonni R. Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy. Food Control. 2022. 108574. https://doi.org/10.1016/j.foodcont.2021.108574
24. Schievano E., Morelato E., Facchin C., Mammi S. Characterization of markers of botanical origin and other compounds extracted from unifloral honeys. Journal of Agricultural and Food Chemistry. 2013. Vol. 61. No. 8. P. 1747–1755.
25. Wang X., Chen Y., Hu Y., Zhou J., Chen L., Lu X. Systematic Review of the Characteristic Markers in Honey of Various Botanical, Geographic, and Entomological Origins. Food Sci. Technol. 2022. Vol. 2. No. 2. P. 206–220. https://doi.org/10.1021/acsfoodscitech.1c00422
26. Ohmenhaeuser M., Monakhova Y. B., Kuballa T., Lachenmeier D.W. Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics. Analytical Chemistry. 2013. Article ID 825318, http://dx.doi.org/10.1155/2013/825318
27. Olawode E.O., Tandlich R., Cambray G. 1H-NMR Profiling and Chemometric Analysis of Selected Honeys from South Africa, Zambia, and Slovakia. Molecules. 2018. Vol. 23. P. 578.
doi:10.3390/molecules23030578
28. Song X., She S., Xin M., Chen L., Li Y., Vander Heyden Y., Rogers K. M., Chen L. Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics. Journal of Food Composition and Analysis. 2020. Vol. 86, [103390]. https://doi.org/10.1016/j.jfca.2019.103390
29. Spiteri M., Jamin E., Thomas F., Rebours A., Lees M., Rogers K. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chemistry. 2015. Vol. 189. P. 60-66. https://doi.org/10.1016/j.foodchem.2014.11.099
30. Deng J., Liu R., Lu Q., Hao P., Xu A., Zhang J., Tan J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chemistry. 2018. Vol. 252. P. 243–249. https://doi.org/10.1016/j.foodchem.2018.01.115
31. Rachineni K., Kakita V. M., Awasthi N. P., Shirke V. S., Hosur R. V., Shukla S.C. Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification. Current Research in Food Science. 2022. Vol. 5. P. 272-277. https://doi.org/10.1016/j.crfs.2022.01.008
32. Kruk D., Masiewicz E., Budny J., Kolodziejski K., Zulewska J., Wieczorek Z. Relationship between macroscopic properties of honey and molecular dynamics – temperature effects. Journal of Food Engineering. 2022. Vol. 314. 110782 https://doi.org/10.1016/j.jfoodeng.2021.110782.
33. Luong D.V., Tam N.Q., Xuan D.T.T., Tai N.T. NMR based metabolomic approach for evaluation of Vietnamese honey. Viet. J. Chem. 2019. Vol. 57. P. 712–716. https://doi.org/10.1002/vjch.2019000101
34. Donarski J.A., Jones S.A., Charlton A.J. Application of Cryoprobe 1H Nuclear Magnetic Resonance Spectroscopy and Multivariate Analysis for the Verification of Corsican Honey. Journal of
Agricultural and Food Chemistry. 2008. Vol. 56. No.14. P. 5451-5456 doi: 10.1021/jf072402x
35. Donarski J. A., Jones S.A., Harrison M., Driffield M., Charlton A.J. Identification of botanical biomarkers found in Corsican honey. Food Chemistry. 2010. Vol. 118. No 4. P.987-994. doi: 10.1016/j.foodchem.2008.10.033
36. Rashid M., Singh S.K., Singh C. Nuclear Magnetic Resonance Spectroscopy: Theory and Applications. 2021. P. 469-512. https://doi.org/10.1007/978-981-33-6084-6_18
37. Keeler J. Understanding NMR Spectroscopy. Wiley Interscience, New Jersey, 2010.
38. Lambert J. B., Mazzola E.P., Clark D. Ridge Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods. John Walley&Sons, 2019.
39. Chen D., Wang Zi, Guo Di, Orekhov V., Qu X. Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. Chemistry. A European Journal. 2020. Vol. 26. No 46. P. 10391-1040. https://doi.org/10.1002/chem.202000246
40. QU Q., JIN L. Application of nuclear magnetic resonance in food analysis Food Sci. Technol. 2022. Vol. 42. https://doi.org/10.1590/fst.43622.