TOPOLOGICAL OPTIMIZATION OF MACHINE PARTS AND EQUIPMENT IN THE SOLIDWORKS SIMULATION ENVIRONMENT
Abstract
The article discusses a relatively new and perspective approach to optimizing the design of machine parts and equipment. The method consists in optimizing the topology of the part structure by effectively distributing the material under certain operating loads. The object of study in the article is the mounting bracket PARKER HANNIFIN weighing 6.5 kg with a rated load of 50 kN. The calculation model of the bracket according to its drawing was reproduced in a geometric model of the part on a scale of 1:1 in SOLIDWORKS, a material is assigned and a mass is determined that fully corresponds to the mass of the original part. A strength static analysis of the bracket model was carried out in SOLIDWORKS Simulation, on the basis of which the stresses arising in the part, the displacement and the safety factor of 2.7 were determined. In addition, using the Desing Insight tool, the areas that most effectively bear the load and those that are not subject to load are identified. Based on this, an assumption has been formulated about the feasibility of carrying out topological optimization of the part in order to reduce its mass and effectively use the volume of material under operating loads. A topological analysis of the bracket was carried out in the SOLIDWORKS Simulation environment. The topology analysis was performed with the best ratio of the weight of the bracket to the rigidity of its structure with a weight reduction rate of 60%. A model was obtained, on the basis of which the appropriate adjustments were made to the basic model of the bracket using the tools of the SOLIDWORKS CAD module. As a result of modification of the initial model of the bracket, an optimized model of the bracket was obtained. The weight of the optimized model is 3 kg, which is 46% of the initial model. A strength static analysis of the optimized model of the part was performed, on the basis of which the value of the stresses arising in the part, the value of displacements and the safety factor, which is 1.5, were established. Based on the results of the studies, it was concluded that the optimized part has sufficient rigidity and safety margin at given load values.
References
sldworks/r_welcome_sw_online_help.htm.
2. Мастенко І. В., Стельмах Н. В. Застосування топологічної оптимізації при проектуванні деталі типу кронштейн. Ефективність інженерних рішень
у приладобудуванні : збірник праць XV Всеукраїнської науково-практичної конференції студентів, аспрантів та молодих вчених, 10-11 грудня 2019 року, м.
Київ / КПІ ім. Ігоря Сікорського, ПБФ, ФММ. Київ : КПІ ім. Ігоря Сікорського, 2019. С. 147-150.
3. Мастенко І. В., Стельмах Н. В. Аналіз методів топологічної оптимізації при проектуванні елементів приладів. Погляд у майбутнє приладобудування : збірник праць ХIII Всеукраїнської науково-практичної конференції студентів, аспрантів та молодих вчених, 13-14 травня 2020 року,
м. Київ / КПІ ім. Ігоря Сікорського, ПБФ, ФММ. Київ : КПІ ім. Ігоря Сікорського, 2019. С. 109-111.
4. Стукалець І. Г. Основи інженерного аналізу технічних об’єктів. Курс лекцій для студентів інженерних спеціальностей. Львів : ЛНУП, 2022. 109 с.
5. Bendsøe M. P., Kikuchi N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Comput. Methods Appl.
Mech. Eng. 1988, 71(2), p. 197–224.
6. Bendsøe M. P., Sigmund O. Topology optimization: theory, methods, and applications. Springer, Berlin, 2003, ISBN-3540429921, 376 p.
7. Deaton J. D., Grandhi R. V. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and
Multidisciplinary Optimization. 2014. January. Vol. 49, iss. 1. Р. 1-38.
8. Diaz A. R., Kikuchi N. Solutions to Shape and Topology Eigenvalue Optimization Using a Homogenization Method. Int. J. Numer. Methods Eng. 1992, 35, p. 1487-1502.
9. Eves J., Toropov V. V., Thompson H. M., Gaskell P. H., Doherty J. J., Harris J. C. Topology optimization of aircraft with non-conventional
configurations. 8th World Congress on Structural and Multidisciplinary Optimization. June 1 – 5 2009,
Lisаbon. P. 1-9.