PROPERTIES OF MODEL MINCED MEAT AND MEAT-CONTAINING SEMI-FINISHED PRODUCTS DEPENDING ON THE AMOUNT OF STRUCTURING AGENT

Keywords: technology, meat-containing product, structuring, fiber, model systems

Abstract

Recently, the use of plant-based proteins in food formulations has become relevant due to their lower production costs compared to animal proteins. The modern market offers a wide range of plant-based proteins, creating the need for innovation in the food industry. In the product range of meat-processing enterprises, the share of meat-containing products is dynamically increasing. A meat-containing product is a food product in which the formulation includes at least 15% deboned meat or produced from offal and(or) blood. The similarity of meat-containing products in texture and appearance to meat products is a significant factor influencing consumer choice, especially for those who prefer meat products. There are various structuring methods, but recent trends highlight an increase in the use of dietary fibers in meat products not only for technological reasons but also as ingredients for functional foods. This study investigated the effect of dietary fiber mixtures in amounts of 1.5%, 3%, and 4.5% on the active acidity (pH) and texture of model systems based on beef and main ingredients for meat-containing products commercial textured soy-based protein (SOYTEX 5006PC) and protein isolate (ISOPRO 510A). According to the formulations, emulsions were prepared following technological instructions for using dietary fiber mixtures and protein preparations. Instrumental analysis of the model systems was conducted using a pH meter (pH 50 VIO lab) and a texture analyzer (Shimadzu EZ-LX) before and after thermal treatment. Significant differences in active acidity were observed between beef-based samples and those with plantbased proteins, with the latter exceeding a pH 6. This is due to the alkaline characteristics of soy preparations, whose active acidity ranged from 7.42 to 7.43. The hardness of samples made with meat raw materials was significantly higher compared to samples with textured soy-based protein and soy protein isolate. The higher hardness values in beef samples were expected due to the denaturation of muscle proteins, which contributes to the firmness of the meat system. The research results represent the first stage in developing a structuring composition based on dietary fibers for meat-containing products.

References

1. Alexander P., Brown C., Arneth A., Finnigan J., Rounsevell M.D.A. Human appropriation of land for food: The role of diet / Global Environmental Change. 2016. Vol. 41. P. 88–98. URL: https://doi.org/10.1016/j.gloenvcha.2016.09.005
2. Kołodziejczak K., Onopiuk A., Szpicer A., Poltorak A. Meat Analogues in the Perspective of Recent Scientific Research: A Review / Foods. 2022. Vol. 11. P. 105. URL: https://doi.org/10.3390/foods11010105
3. Kyriakopoulou K., Keppler J.K., van der Goot A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues / Foods. 2021. Vol 10. P. 600. URL: https://doi.org/10.3390/foods10030600
4. Singh P., Krishnaswamy K. Sustainable zerowaste processing system for soybeans and soy by-product valorization / Trends in Food Science & Technology. 2022. Vol. 128. P. 331–344. URL: https://doi.org/10.1016/j.tifs.2022.08.015
5. Текстуровані рослинні білки як альтернатива м’ясу / Страшинський І.М., Маринін А.І., Пергат О., Байда Я. Матеріали 89 Міжнародної наукової конференції молодих учених, аспірантів і студентів "Наукові здобутки молоді – вирішенню проблем харчування людства у XXI столітті", 3-7 квітня 2023 р. К.: НУХТ, 2023. Ч. 1. С. 289.
6. Krintiras G.A., Göbel J., van der Goot A.J., Stefanidis G.D. Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell / Journal of Food Engineering. 2015. Vol. 160. P. 34–41. URL: https://doi.org/10.1016/j.jfoodeng.2015.02.015
7. ХАРЧОВІ ВОЛОКНА ЯК ФУНКЦІОНАЛЬНИЙ ІНГРЕДІЄНТ У М’ЯСНИХ НАПІВФАБРИКАТАХ / Гречко В.В., Страшинський І.М., Пасічний В.М. Технічні науки та технології. 2019. № 2 (16). С. 154–164. URL: https://doi.org/10.25140/2411-5363-2019-2(16)-154-164
8. Fernandes A., Mateus N., de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective / Foods. 2023. Vol. 12. P. 1052. URL: https://doi.org/10.3390/foods12051052
9. Marvizadeh M.M., Akbari N. Development and Utilization of Rice Bran in Hamburger as a Fat Replacer / Journal of Chemical Health Risks. 2019. Vol 9. P. 245–251. URL: https://doi.org/10.22034/jchr.2019.668190
10. Розробка комплексу нефосфатних вологоутримуючих добавок на основі активних стабілізаторів м’ясних систем / Страшинський І.М., Грицай М.С. Вісник Львівського торговельно-економічного університету. 2024. № 37. С. 71–79. URL: https://doi.org/10.32782/2522-1221-2024-37-10
11. Chauhan S.S., LeMaster M.N., Clark D.L., Foster M.K., Miller C.E., England E.M. Glycolysis and pH Decline Terminate Prematurely in Oxidative Muscles despite the Presence of Excess Glycogen / Meat and Muscle Biology. 2019. 3, № 1. URL: https://doi.org/10.22175/mmb2019.02.0006
12. Anjum F.M., Naeem A., Khan M.I., Nadeem M., Amir R.M. Development of texturized vegetable protein using indigenous sources / Pakistan Journal of Food Science. 2011. Vol. 21. P. 33–44. URL: https://doi.org/10.15199/65.2018.12.6
13. Ahmad S., Rizawi J.A., Srivastava P.K. Effect of soy protein isolate incorporation on quality characteristics and shelf-life of buffalo meat emulsion sausage / Journal of Food Science and Technology. 2010. Vol. 47, № 3. P. 290–294. URL: https://doi.org/10.1007/s13197-010-0045-x
14. Сухенко Ю.Г., Жеплінська М.М., Пасічний В.М., Тимошенко І.В. Оптимізація виробничих процесів: [Навчальний посібник] / За ред. проф. Ю.Г. Сухенка. К.: Фірма «ІНКОС», 2019. 259 с.
15. Ayadi M.A., Kechaou A., Makni I., Attia H. Influence of carrageenan addition on turkey meat sausages properties / Journal of Food Engineering. 2009. Т. 93, № 3. С. 278–283. URL: https://doi.org/10.1016/j.jfoodeng.2009.01.033
Published
2024-12-30
Section
MODERN DIRECTIONS FOR THE DEVELOPMENT OF FOOD TECHNOLOGY