MODELING AND OPTIMIZATION OF THE PROCESS OF ENZYMATIC HYDROLYSIS OF WHEY PROTEINS

  • T. P. Synenko Sumy National Agrarian University
  • N. E. Frolova National University of Food Technologies
Keywords: whey proteins, Protolad, enzymatic hydrolysis, optimization, mathematical modeling

Abstract

The article considers the tendencies of production of natural flavoring additives of gastronomic direction. The expediency of using whey proteins in flavoring additives is substantiated. The purpose of the article is mathematical modeling of the process of hydrolysis of whey proteins by the criterion of maximum yield of free amino acids using an enzyme catalyst. In experimental studies using a commercial whey protein concentrate (WPC-80 UV) and alkaline bacterial protease “Protolad”. Optimization of enzymatic hydrolysis parameters was performed by the method of response surfaces, using a central composite rotatable plan. The process of enzymatic hydrolysis of whey proteins and obtaining low molecular weight peptides and amino acids is presented in the form of a parametric scheme. Determined significant technological parameters of enzymatic hydrolysis of whey protein: concentration of enzyme preparation (F, %) and substrate (S, %), pH of the medium (pH), temperature (t, °C) and duration of the hydrolysis process (τ, min). The process is optimized for the initial parameters of the models – the nitrogen content of amine groups (NAG, mg /100 g). The results of the experiments and mathematical processing of the data in the form of regression equations were derived model of hydrolyzed whey protein under the action of enzymes. Regression analysis of the data showed all the selected factors and their interactions are significant, the level of reliability exceeds 95%. As a result of stepby- step analysis of the developed mathematical model, the process of hydrolysis of whey proteins by the enzyme preparation “Protolad” is optimized. It was established that the most profound degree of hydrolysis occurs following technological parameters: concentration of enzyme 4±0,01% and substrate 18±0,5%, pH 7,7±0,1 and ambient temperature 57±2 °C, process duration 75 min.

References

1. Ayseli M.T., Ayseli Y.I. Flavors of the future: health benefits of flavor precursors and volatile compounds in plant foods. Trends in Food Science & Technology. 2016. № 48. Р. 69–77. https://doi.org/10.1016/j.tifs.2015.11.005.
2. Wouters A.G.B., Rombouts I., Fierens E., Brijs K., Delcourhttps J.A. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety. 2016. № 15(4). Р. 786–800. https://doi.org/10.1111/1541-4337.12209.
3. Nandy S.K. Bioprocess technology governs enzyme use and production in industrial Biotechnology: An Overview. Enzyme Engineering. 2016. № 5. Р. 1–5. https://doi.org/10.4172/2329-6674.1000144.
4. De Oliveira Felipi L., de Oliveira A. M., Lemos Bicas J. Bioaroma – perspectives for sustainable development. Trends in Food Science & Technology. 2017. № 26. Р. 141–153. https://doi.org/10.1016/j.tifs.2017.02.005.
5. Naumenko K., Petrusha O., Frolova N., Fedorenko O. Quality assessment of extracts from unconventional plant raw materials. EasternEuropean Journal of Enterprise Technologies. 2015. № 4(10). Р. 49–54. https://doi.org/10.15587/1729-4061.2015.47685.
6. Мухин В., Новиков В. Белковые гидролизаты из отходов переработки морепродуктов. Птицеводство. 2002. № 2. С. 21–23.
7. Murna M., Novi S., Fahrizal Z.. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. International Journal of the Bioflux Society. 2012. № 5(1). Р. 36–39.
8. Song S., Li S., Fan L., Hayat K., Xiao Z., Chen L. A novel method of beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction. Food Chemistry. 2016. № 208. Р. 81–88. https://doi.org/10.1016/j.foodchem.2016.03.062.
9. Shang Y., Cao H., Wei C., Thakur K., Liao A., Huang J., Wei Z. Effect of sugar types on structural and flavor properties of peony seed derived Maillard reaction products. Journal of Food Processing and Preservation. 2019. https://doi.org/10.1111/jfpp.14341.
10. De Castro R.J.S., Domingues M.A.F., Ohara A., Okuro P.K., Santos J.G., Brexo R.P., Sato H.H. Whey protein as a key component in food systems: physicochemical properties, production technologies and applications. Food Structure. 2017. № 14. Р. 17–29. http://dx.doi.org/10.1016/j.foostr.2017.05.004.
11. Храмцов А.Г. Белковые продукты из молочной сыворотки. Переработка молока. 2011. № 1. С. 18–21.
12. Гордиенко Л.А., Евдокимов И.А., Куликова И.К. Использование концентрата сывороточных белков при производстве кисломолочных напитков. Молочное дело. 2011. № 3. С. 17.
13. Ghosh B.C., Prasad L.N., Saha N.P. Enzymatic hydrolysis of whey and its analysis. Journal of food science and technology. 2017. № 54. P. 1476–1483. http://dx.doi.org/10.1007/s13197-017-2574-z.
14. Mota M.V.T., Ferreira I.M.P.L.V.O., Oliveira M.B.P., Rocha C., Teixeira J.A., Torres D., Gonçalves M.P. Enzymatic Hydrolysis of Whey Protein Concentrates: Peptide HPLC Profiles. Journal of Liquid Chromatography & Related Technologies. 2004. № 27(16). Р. 2625–2639. http://dx.doi.org/10.1081/jlc-200028429.
15. Severin S., Xia W.S. Enzymatic hydrolysis of whey proteins by two different proteases and their effect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry. 2006. № 30. Р. 77–97. http://dx.doi.org/10.1111/j.1745-4514.2005.00048.x.
16. Синенко Т.П., Фролова Н.Е. Ферментативний гідроліз сироваткових білків молока. Вісник аграрної науки Причорномор’я. 2020. № 1. С. 79–86. http://dx.doi.org/10.31521/2313-092X/2020-1(105)-10.
Published
2021-05-11
Section
MODERN DIRECTIONS FOR THE DEVELOPMENT OF FOOD TECHNOLOGY