USING ARTIFICIAL INTELLIGENCE TOOLS TO FORM PAYBACK BUSINESS MODELS

PDF (Українська)

Keywords

artificial intelligence
AI tools
Big Data analysis
machine learning
predictive modeling
business analytics
predictive analytics
business choice
profitable business models
optimization of management decisions
business planning automation
strategic planning automation

How to Cite

Kutsyk, P., & Kovtun, O. (2025). USING ARTIFICIAL INTELLIGENCE TOOLS TO FORM PAYBACK BUSINESS MODELS. Entrepreneurship and Trade, (46), 66-80. https://doi.org/10.32782/2522-1256-2025-46-8

Abstract

The article examines the areas in which modern analytical tools (software solutions) integrated with AI can be applied, as well as the tasks that can be addressed with their help, with the aim of developing profitable business models and supporting business and management decisions of both tactical and strategic significance. As key issues that can be solved, and processes (related to the substantiation of business and managerial decision-making) that can be improved or optimized with the help of AI tools – and which, therefore, will have a direct impact on the formation of effective business models as ways of generating profit from selected types of activity by business entities (BEs) – the following are considered: tasks, processes, and decisions related to the generation, review, and evaluation of various options for market environment segmentation; alternative scenarios of events and business behavior; alternative business and managerial actions; as well as the justification of their optimal parameters and the selection of the most appropriate options (according to specified criteria) among them, which should be incorporated into the business and strategic plans of BEs. Specifically, these are: a) processes and decisions related to selecting business directions, the so-called strategic business zones (SBZs) or strategic business areas (SBAs), attractive for business entities (BEs) in terms of potential future profitability, based on computerized algorithms for constructing and applying the multidimensional Zwicky morphological matrix (the method of morphological analysis);b) processes for determining the values of absolute strategic potential and competitiveness of BEs (calculated using an algorithm that compares the values of their individual components with those of the conventionally strongest competitor within the SBZ), according to the key success factors (KSFs) for particular SBZs;c) processes of identifying and evaluating potential opportunities and threats (risks) for the development of a BE’s business in these SBZs;d) processes of forming and making decisions regarding the choice of strategic behavioral (action) alternatives at all levels of business managemen t – corporate, individual businesses (i.e., at the level of so-called strategic business units, SBUs), functional (business process level), and operational. A selection and list of AI tools currently available on the market has been compiled and presented. Attention is focused on their functionality and potential for practical application in various aspects – that is, for solving different tasks related to the information support of developing and operating profitable business models. Consideration is given to their ability to provide systematic substantiation of adequate, high-quality, accurate, and effective business and managerial decisions to be offered to business entities and their management. This capability, in turn, is determined by the possibilities embedded in such technological concepts (ideas) as “Big Data Analysis,” “Data Mining” (DM), “Deep Learning” (DL), “Machine Learning” (ML), and “Knowledge Discovery in Data” (KDD), as well as the algorithms on which they are based. Attention is drawn to the fact that the foundation of AI tools for solving tasks of effective management, building profitable and prospectively lucrative business models, and substantiating rational business and managerial decisions lies in a variety of methods of classification, modeling, evaluation, and forecasting. These are based on the use of principles such as decision trees, artificial neural networks (ANNs), probability theory, mathematical statistics, as well as algorithms and computer programs for predictive modeling and machine learning. Such tools are applied to the analysis of current and retrospective data in order to forecast (predict) future events, dependencies, and trends in the business environment – or those that otherwise could not be detected or defined. The application of AI tools using various methods and algorithms for processing and deep analysis of large datasets (databases) helps business entity (BE) management to identify new trends or relationships in business, as well as new business insights (knowledge) that become practically useful for making effective management decisions and generating optimal tactical and strategic alternatives for business behavior. In particular, deep data analysis (Data Mining – DM, Deep Learning – DL, Machine Learning – ML, Knowledge Discovery in Data – KDD) is already widely applied in business and business management today for forecasting market trends; for identifying critical directions to strengthen the competitiveness of business entities in prospective industries, taking into account both existing and potential risks as well as key success factors (KSFs) in such businesses; for evaluating and identifying possible ways to improve the efficiency of individual business processes; for automating business and strategic planning (both optionally and systematically overall); and for performing other tasks that enable business entities to develop profitable business models and ensure their long-term profitable operation thanks to adequate and timely access to information – and consequently, readiness to respond promptly and appropriately to detected and forecasted (predicted, anticipated) changes in the external business environment.

https://doi.org/10.32782/2522-1256-2025-46-8
PDF (Українська)

References

Taku Wakasugi, Kumiko Buma Toyota uses Notion to drive more efficient workflows with collaboration that comes standard. Notion. URL: https://www.notion.com/customers/toyota

Tukey John. Exploratory Data Analysis. New York : Addison-Wesley, 1977. URL: https://www.consoleflare.com/blog/wp-content/uploads/2022/09/Exploratory-Data-Analysis-1977-John-Tukey.pdf

Turban E. Decision support and expert systems: management support systems. Englewood Cliffs. N. J. : Prentice Hall, 1995. 930 р.

Mitchell Tom. Machine Learning. New York : McGraw-Hill, 1997. 414 p. URL: https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Big data: The next frontier for innovation, competition, and productivity. Report / James Manyika, Michel Chui, Brad Brown, ets. McKinsey Global Іnstіtute. McKinsey & Company. May 2011. URL: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation#

MacAfee А., Brynjolfsson E. Big Data: The Management Revolution. Harvard Business Review, 90, no. 10 (October 2012). URL: https://hbr.org/2012/10/big-data-the-management-revolution

Bai Ju., Fan Ji. and Tsay R. Special Issue on Big Data Journal of Business &Economic Statistics. 2016. Vol. 34. Issue 4. P. 487-488.

Kirchmer M. High Performance Through Business Process Management. Strategy Execution in a Digital World. Berlin, New York and others, 2017. 3rd edition. URL: https://www.researchgate.net/publication/313820103_High_Performance_through_Business_Process_Management_-_Strategy_Execution_in_a_Digital_World

Koehler J. Business Process Innovation with Artificial Intelligence: Levering Benefits and Controlling Operational Risks. European Business & Management. 2018. No. 4 (2). P. 55-66. DOI: https://doi.org/ 0.11648/j.ebm.20180402.12

Benba H., Davenport T. H., Pachidi S. Artificial Intelligence in Organizations: Current State and Future Opportunities. MIS Quarterly Executive. 2020. December. 19(4):9-21. URL: https://www.researchgate.net/publication/346580474_Artificial_Intelligence_in_Organizations_Current_State_and_Future_Opportunities

Russell S., Norvig P. Artificial Intelligence: A Modern Approach. Pearson. 2021. 4th Edition. 1166 р. URL: http://lib.ysu.am/disciplines_bk/efdd4d1d4c2087fe1cbe03d9ced67f34.pdf

Didier Bonnet, George Westerman. The New Elements of Digital Transformation. MIT Sloan Managment Review. Magazine Winter 2021 Issue / Research Feature. Volume 62, Issue #2. URL: https://sloanreview.mit.edu/article/the-new-elements-of-digital-transformation/

Sara Brown. Machine learning, explained. MIT Sloan. 2021. 21 April. https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

Haan K., Watts R. How Businesses Are Using Artificial Intelligence. Forbes. Apr 24, 2023. URL: https://www.forbes.com/advisor/business/sof tware/ai-in-business/

Neil Assur, Kayvaun Rowshankish. The data-driven enterprise of 2025. McKinsey. January 28, 2022. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-data-driven-enterprise-of-2025

Болквадзе Н., Братко О., Мигаль О. Впровадження штучного інтелекту в бізнес-діяльність компанії. Економіка та суспільство. 2023. Вип. 58. DOI: https://doi.org/10.32782/2524-0072/2023-58-81

Чернишова О. О., Домашенко С. В., Домашенко Д. Г. Вплив штучного інтелекту на бізнес-процеси з метою оптимізації та покращення ефективності роботи організації. Вчені записки ТНУ імені В. І. Вернадського. 2024, 35 (74). С. 196-204. URL: https://www.tech.vernadskyjournals.in.ua/journals/2024/2_2024/29.pdf

Клюс Ю. І., Гуменюк В. В. Використання ШІ в бізнес-процесах підприємства. Вісник Східноукраїнського національного університету імені Володимира Даля. 2025, (289). URL: https://journals.snu.edu.ua/index.php/VisnikSNU/article/view/1047

Окландер І. Cистемне використання штучного інтелекту в бізнес-процесах підприємств. Економіка та суспільство. 2025. Вип. 74. DOI: https://doi.org/10.32782/2524-0072/2025-74-92

Єрошова О. Використання штучного інтелекту для оптимізації бізнес-процесів підприємства в контексті сталого розвитку. Журнал стратегічних економічних досліджень. 2025, 2(25). С. 47-61. URL: https://www.researchgate.net/publication/395193536_Vikoristanna_stucnogo_intelektu_dla_optimizacii_biznes-procesiv_pidpriemstva_v_konteksti_stalogo_rozvitku

Dovile Kliusovaite What is Predictive Analytics? To Predict or Not to Predict. McCoy. July 17, 2024. URL: https://mccoy-partners.com/en/updates/predictive-analytics-guide

Zwicky F. Discovery, Invention, Research – Through the Morphological Approach, Toronto : The Macmillan Company, 1969.

Tom Ritchey. General Morphological Analysis. A general method for non-quantified modelling. Swedish Morphological Society, 2002.

Куцик П. О., Ковтун О. І. Визначення перспективного бізнесу та моделювання оптимальних стратегічних наборів для підприємств з використанням можливостей штучного інтелекту. Цифрова економіка та економічна безпека. 2024, 5 (14). С. 127-136. DOI: https://doi.org/10.32782/dees.14-20

Куцик П. О., Ковтун О. І. Застосування технологій штучного інтелекту в системі обгрунтування стратегічних рішень управління бізнесом. Вісник Львівського торговельно-економічного університету. Підприємництво і торгівля. 2024. № 42. С. 94-109. DOI: https://doi.org/10.32782/2522-1256-2024-42-13

Upmetrics. URL: https://upmetrics.co/

Odoo. URL: https://www.odoo.com/uk_UA

Planful. URL: https://planful.com/

Performance Management Dashboards. INTERNET ARCHIVE WayBackMachine. URL: https://web.archive.org/web/20131115171802/http://www.simplexsystems.com/services/Performance%20Management%20Dashboards/performance_management_dashboards.html

What is business intelligence? IBM. URL: https://www.ibm.com/think/topics/business-intelligence

YouControl. URL: https://youcontrol.com.ua/

Microsoft Power BI. Innoware. URL: https://innoware.ua/microsoft-power-bi/

Chrystal R. China What is software as a service (SaaS)? IBM. URL: https://www.ibm.com/think/topics/saas

What is software as a service (SaaS)? Microsoft. URL: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas

ERP Enterprise Resource Planning системи. Innoware. URL: https://innoware.ua/erp/

Що таке ERP. Oracle. URL: https://www.oracle.com/ua/erp/what-is-erp/

Замлинський В. А., Щуровська А. Ю., Замлинська О. В. Особливості та характеристики business intelligence (BI)-систем як інструменту підвищення ефективності діяльності компанії. Український журнал прикладної економіки та техніки. Західноукраїнський національний університет. 2023, 1. С. 53-61. URL: http://ujae.org.ua/osoblyvosti-ta-harakterystyky-business-intelligence-bi-system-yak-instrumentu-pidvyshhennya-efektyvnosti-diyalnosti-kompaniyi/

Oracle Business Intelligence (BI). Oracle. URL: https://www.oracle.com/ua/business-analytics/business-intelligence/technologies/bi.html

About SAS. SAS. URL: https://www.sas.com/en_us/company-information.html#history

Data and AI Solution. SAS. URL: https://www.sas.com/en_us/home.html

GMDH Streamline Reviews. Slashdot. URL: https://slashdot.org/software/p/GMDH-Streamline/

FinModelsLab. URL: https://finmodelslab.com/

FinModelsLab – Research and Compare. TEC. URL: https://www3.technologyevaluation.com/solutions/60977/finmodelslab?srsltid=AfmBOoqrJIdUXnBQWqEGak3-98bBcJQcGT-oqeONQghkCRZ90bhmeMLC

LivePlan. URL: https://www.liveplan.com/

Smartsheet. URL: https://www.smartsheet.com/

Notion. URL: https://www.notion.com/

HubSpot. URL: https://www.hubspot.com/

Tableau. URL: https://www.tableau.com/

Looker. URL: https://cloud.google.com/looker

Domo. The AI and Data Products Platform. URL: https://www.domo.com/

Metabase. URL: https://www.metabase.com/

StrategyOne. The All-in-OneAI+BI Platform. Strategy. URL: https://www.strategysoftware.com/strategyone

What's New in Strategy One. MicroStrategy Incorporated. URL: https://www2.microstrategy.com/producthelp/current/readme/en-us/content/whats_new.htm

QlikSense. Modern analytics. Next-Level On-Premises Insight and Analytics From Your Data. URL: https://www.qlik.com/us/products/qlik-sense

Zoho Analytics. URL: https://www.zoho.com/analytics/

BI and Analytics platform – Zoho for Enterprise. URL: https://www.zoho.com/enterprise/bi-platform.html

Sisense. URL: https://www.sisense.com/

Taku Wakasugi, Kumiko Buma Toyota uses Notion to drive more efficient workflows with collaboration that comes standard. Notion, available at: https://www.notion.com/customers/toyota

Tukey John (1977), Exploratory Data Analysis, Addison-Wesley, New York, available at: https://www.consoleflare.com/blog/wp-content/uploads/2022/09/Exploratory-Data-Analysis-1977-John-Tukey.pdf

Turban E. (1995), Decision support and expert systems: management support systems, Prentice Hall, Englewood Cliffs. N. J., 930 p.

Mitchell Tom (1997), Machine Learning, McGraw-Hill, New York, 414 p., available at: https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Big data: The next frontier for innovation, competition, and productivity. Report / James Manyika, Michel Chui, Brad Brown, ets. McKinsey Global Institute. McKinsey & Company. May 2011, available at: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation#

MacAfee А. and Brynjolfsson E. (2012), Big Data: The Management Revolution, Harvard Business Review, 90, no. 10 (October 2012), available at: https://hbr.org/2012/10/big-data-the-management-revolution

Bai Ju, Fan Ji and Tsay R. (2016), Special Issue on Big Data Journal of Business &Economic Statistics, Journal of Business &Economic Statistics, vol. 34, Issue 4, p. 487-488.

Kirchmer M. (2017), High Performance Through Business Process Management. Strategy Execution in a Digital World. 3rd edition, Berlin, New York and others, available at: https://www.researchgate.net/publication/313820103_High_Performance_through_Business_Process_Management_-_Strategy_Execution_in_a_Digital_World

Koehler J. (2018), Business Process Innovation with Artificial Intelligence: Levering Benefits and Controlling Operational Risks, European Business & Management, No. 4 (2), p. 55-66. DOI: https://doi.org/0.11648/j.ebm.20180402.12

Benba H. Davenport, T. H. and Pachidi S. (2020), Artificial Intelligence in Organizations: Current State and Future Opportunities, MIS Quarterly Executive, December, 19(4):9-21, available at: https://www.researchgate.net/publication/346580474_Artificial_Intelligence_in_Organizations_Current_State_and_Future_Opportunities

Russell S. and Norvig P. (2021), Artificial Intelligence: A Modern Approach. 4th Edition, Pearson, 1166 p., available at: http://lib.ysu.am/disciplines_bk/efdd4d1d4c2087fe1cbe03d9ced67f34.pdf

Didier Bonnet and George Westerman (2021), The New Elements of Digital Transformation, MIT Sloan Managment Review, Magazine Winter 2021 Issue / Research Feature, vol. 62, Issue #2, available at: https://sloanreview.mit.edu/article/the-new-elements-of-digital-transformation/

Sara Brown. Machine learning, explained. MIT Sloan. 2021. 21 April, available at: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

Haan K. and Watts R. How Businesses Are Using Artificial Intelligence. Forbes. Apr 24, 2023, available at: https://www.forbes.com/advisor/business/sof tware/ai-in-business/

Neil Assur, Kayvaun Rowshankish. The data-driven enterprise of 2025. McKinsey. January 28, 2022, available at: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-data-driven-enterprise-of-2025

Bolkvadze N., Bratko O. and Myhal O. (2023), Vprovadzhennia shtuchnoho intelektu v biznes-diialnist kompanii, Ekonomika ta suspilstvo, vyp. 58. DOI: https://doi.org/10.32782/2524-0072/2023 58-81

Chernyshova, O. O. Domashenko, S. V. and Domashenko, D. H. (2024), Vplyv shtuchnoho intelektu na biznes-protsesy z metoiu optymizatsii ta pokrashchennia efektyvnosti roboty orhanizatsii, Vcheni zapysky TNU imeni V. I. Vernadskoho, 35 (74), s. 196-204, available at: https://www.tech. vernadskyjournals.in.ua/journals/2024/2_2024/29.pdf

Klius, Yu. I. and Humeniuk, V. V. (2025), Vykorystannia ShI v biznes-protsesakh pidpryiemstva, Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, (289), available at: https://journals.snu.edu.ua/index.php/Visnik SNU/article/view/1047

Oklander I. (2025), Systemne vykorystannia shtuchnoho intelektu v biznes-protsesakh pidpryiemstv, Ekonomika ta suspilstvo, vyp. 74. DOI: https://doi.org/10.32782/2524-0072/2025-74-92

Yeroshova O. (2025), Vykorystannia shtuchnoho intelektu dlia optymizatsii biznes-protsesiv pidpryiemstva v konteksti staloho rozvytku, Zhurnal stratehichnykh ekonomichnykh doslidzhen, 2(25), s. 47-61, available at: https://www.researchgate.net/publication/395193536_Vikoristanna_stucnogo_intelektu_dla_optimizacii_biznes-procesiv_pidpriemstva_v_konteksti_stalogo_rozvitku

Dovile Kliusovaite What is Predictive Analytics? To Predict or Not to Predict. McCoy. July 17, 2024, available at: https://mccoy-partners.com/en/updates/predictive-analytics-guide

Zwicky F. (1969), Discovery, Invention, Research – Through the Morphological Approach, The Macmillan Company, Toronto.

Tom Ritchey (2002), General Morphological Analysis. A general method for non-quantified modelling, Swedish Morphological Society

Kutsyk, P. O. and Kovtun, O. I. (2024), Vyznachennia perspektyvnoho biznesu ta modeliuvannia optymalnykh stratehichnykh naboriv dlia pidpryiemstv z vykorystanniam mozhlyvostei shtuchnoho intelektu, Tsyfrova ekonomika ta ekonomichna bezpeka, 5 (14), s. 127-136. DOI:https://doi.org/10.32782/dees.14-20

Kutsyk, P. O. and Kovtun, O. I. (2024), Zastosuvannia tekhnolohii shtuchnoho intelektu v systemi obgruntuvannia stratehichnykh rishen upravlinnia biznesom, Visnyk Lvivskoho torhovelno-ekonomichnoho universytetu. Pidpryiemnytstvo i torhivlia, 42, s. 94-109. DOI:https://doi.org/10.32782/2522-1256-2024-42-13.

Upmetrics, available at: https://upmetrics.co/

Odoo, available at: https://www.odoo.com/uk_UA

Planful, available at: https://planful.com/

Performance Management Dashboards. INTERNET ARCHIVE WayBackMachine, available at: https://web.archive.org/web/20131115171802/http://www.simplexsystems.com/services/Performance%20Management%20Dashboards/performance_management_dashboards.html

What is business intelligence? IBM, available at: https://www.ibm.com/think/topics/business-intelligence.

YouControl, available at: https://youcontrol.com.ua/

Microsoft Power BI. Innoware, available at: https://innoware.ua/microsoft-power-bi/

Chrystal R. China What is software as a service (SaaS)? IBM, available at: https://www.ibm.com/think/topics/saas

What is software as a service (SaaS)? Microsoft, available at: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas

ERP Enterprise Resource Planning systemy. Innoware, available at: https://innoware.ua/erp/

Shcho take ERP. Oracle, available at: https://www.oracle.com/ua/erp/what-is-erp/

Zamlynskyi, V. A. Shchurovska, A. Yu. and Zamlynska, O. V. (2023), Osoblyvosti ta kharakterystyky business intelligence (BI)-system yak instrumentu pidvyshhennia efektyvnosti diialnosti kompanii, Ukrainskyi zhurnal prykladnoi ekonomiky ta tekhniky. Zakhidnoukrainskyi natsionalnyi universytet, 1, s. 53-61, available at: http://ujae.org.ua/osoblyvosti-ta-harakterystyky-business-intelligence-bi-system-yak-instrumentu-pidvyshhennya-efektyvnosti-diyalnosti-kompaniyi/

Oracle Business Intelligence (BI). Oracle, available at: https://www.oracle.com/ua/business-analytics/business-intelligence/technologies/bi.html

About SAS. SAS, available at: https://www.sas.com/en_us/company-information.html#history

Data and AI Solution. SAS, available at: https://www.sas.com/en_us/home.html

GMDH Streamline Reviews. Slashdot, available at: https://slashdot.org/software/p/GMDH-Streamline/

FinModelsLab, available at: https://finmodelslab.com/

FinModelsLab – Research and Compare. TEC, available at: https://www3.technologyevaluation.com/solutions/60977/finmodelslab?srsltid=AfmBOoqrJIdUXnBQWqEGak3-98bBcJQcGT-oqeONQghkCRZ90bhmeMLC

LivePlan, available at: https://www.liveplan.com/

Smartsheet, available at: https://www.smartsheet.com/

Notion, available at: https://www.notion.com/

HubSpot, available at: https://www.hubspot.com/

Tableau, available at: https://www.tableau.com/

Looker, available at: https://cloud.google.com/looker

Domo. The AI and Data Products Platform, available at: https://www.domo.com/

Metabase, available at: https://www.metabase.com/

StrategyOne. The All-in-OneAI+BI Platform. Strategy, available at: https://www.strategysoftware.com/strategyone

What's New in Strategy One. MicroStrategy Incorporated, available at: https://www2.microstrategy.com/producthelp/current/readme/en-us/content/whats_new.htm

QlikSense. Modern analytics. Next-Level On-Premises Insight and Analytics From Your Data, available at: https://www.qlik.com/us/products/qlik-sense

Zoho Analytics, available at: https://www.zoho.com/analytics/

BI and Analytics platform – Zoho for Enterprise, available at: https://www.zoho.com/enterprise/bi-platform.html

Sisense, available at: https://www.sisense.com/