FREQUENCY METER OF ELECTRICAL PULSES BASED ON A PROGRAMMABLE MICROCONTROLLER

  • A. S. Pushak Lviv University of Trade and Economics
  • V. V. Vistovskyy Ivan Franko National University of Lviv
  • A. V. Zhyshkovych Львівський національний університет імені Івана Франка
Keywords: microcontroller, timer, frequency meter, interrupts, control register, programming of microcontrollers

Abstract

Modern electronic devices that are used in various fields of science and technology mostly contain inte-grated circuits, which increases the reliability of the device and reduces its cost compared to the use of discrete semi-conductor elements. Besides, reducing the size and weight of the device extends the limits of its practical application. Nowadays the variety of integrated circuits are produced by such companies as Microchip, On Semiconductor, Texas Instrument, Analog Device, Linear Technology and many others that are leaders in the global market. Some of the integrated circuits that can do various functions are microcontrollers. Today the informational and computer technolo-gies are rapidly evolving allowing to create automated production lines, which can be controlled with the help of a computer. One of the nodes that allow connecting the computer to a peripheral device is the microcontroller. To use the microcontroller in the nodes of electronics, it is necessary to write the program code to implement a particular task. Software tuning of the microcontroller parameters allows controlling the function of the corresponding device without changing the parameters of the electrical circuitry, which is an important factor for the reliability of the device as a whole. One possible application of microcontrollers is the automation of a physical experiment, which allows meas-urements of physical quantities and data transmission to a computer. As an example, the optical spectrometry requires a large number of light intensity measurements in the corresponding in the corresponding spectral range with simulta-neous data transfer to a computer. That is, the measurement of light intensity is accompanied by the measurements of the number of light quanta at a certain wavelength per time unit. The circuit of the frequency meter of electric pulses based on the microcontroller PIC16F876A for spectroscopic measurements has been developed and is presented here-in. The scheme of electric pulse frequency meter based on PIC16F876A microcontroller for spectroscopic measure-ments is developed in this work. MPLAB 4.1 environment developed by Microchip was used to write the program code. Two timer0 and timer1 modules of the PIC16F876A microcontroller were used to implement the frequency meter algo-rithm. The Maximum pulse frequency that can be correctly measured with this frequency meter is 4MHz.

References

1. Bengtsson L. 24-channel dual microcontroller-based voltage controller for ion optics remote control / L. Bengtsson // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2018. – Vol. 890. – P. 96-101.
2. Time-domain measurement methods for R, L and C sensors based on a versatile direct sensor-to-microcontroller interface circuit / Z. Czaja // Sensors and Actuators A: Physical. – 2018. – Vol. 274. – P. 199-210.
3. Romano M. A Teensy microcontroller-based interface for optical imaging camera control during behavioral experiments / M. Romano, M. Bucklin, H. Gritton, D. Mehrotra, R. Kessel, X. Han // Journal of Neuroscience Methods. – 2019. – Vol. 320. – P. 107-115.
4. Казьмірович Р. Інформаційно-керуюча сис-тема аркушорізальної машини на основі програмо-ваних логічних контролерів / Р. Казьмірович, О. Казьмірович // Комп’ютерні технології друкарс-тва. – 2015. – №1(33). – С. 10-17.
5. Казьмірович Р. Модернізація системи про-грамного керування ниткошвейної машини БНШ-6А на базі програмованих логічних контролерів / Р. Казьмірович, О. Казьмірович // Комп’ютерні технології друкарства. – 2016.– №2(36). – С. 41-47.
6. Aliya Arsyad N. Breast milk volume using portable double pump microcontroller Arduino Nano / S. Syarif, M. Ahmad, S. As’ad // Enfermería Clínica. – 2020. – Vol. 30. – P. 555 -558.
7. Serrano Pérez E., Sequential microcontroller-based control for a chemical vapor deposition process / E. Serrano Pérez, J. Serrano Pérez, F. Martínez Piñón, J. Manuel Juárez García, O. Serrano Pérez, F. Juárez López // Journal of Applied Research and Technology. – 2017. – Vol. 15. – P. 593-598.
8. Acho Zuppa L. Chaotic Logistic Map Implementation in the PIC12F629 Microcontroller Unit / L. Acho Zuppa // IFAC Proceedings Volumes. – 2010. – Vol. 43. – P. 167-170.
9. Pankratov V. Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory / V. Pankratov, R.Pärna, M. Kirm, V.Nagirnyi, E.Nõmmiste, S.Omelkov, S.Vielhauer, K.Chernenko, L.Reisberg, P.Turunen, A.Kivimäki, E. Kukk, M.Valden, M. Huttula //Radiation measurement. – 2019. – Vol. 121. – P. 91-98.
10. G. Zimmerer, A unique setup for lumines-cence spectroscopy with synchrotron radiation / Zim-merer G. // Radiation measurement. – 2007. – Vol. 42. – P. 859-864.
Published
2020-05-04
Section
PROSPECTIVE DIRECTIONS OF EQUIPMENT DEVELOPMENT AND DEVELOPMENT OF INFORMATION T