“ELECTRONIC NOSE” FOR EXPRESS DETECTION OF ADULTERATION OF COOKED SAUSAGES BY SOY PRODUCTS
Abstract
This paper reports the possibility of using an “electronic nose” for detection of soy products adulteration in sausages. A system based on a quartz microbalance sensor array and static headspace sampling was used for the injection of the volatile compounds coming from the sausages and soy products during the storage. This paper presents a novel approach to ranking samples (presence or absence of soy products in cooked sausages) by kinetic “visual fingerprints” and “visual fingerprints” of sensors peak signals. Data analysis was performed by probabilistic neuronal network (PNN). The model for determining of soy products in sausages built by means of probabilistic neuronal network gave a great classification performance by considering just the intrinsic area under responses of seven sensors. Changes in the gas phase during storage were included in the algorithm processing by probabilistic neural network.
References
2. Мясо и мясные продукты. Метод гистологической идентификации состава: ГОСТ Р 51604-2000. – Введён в действие 2000–05–12. – М. : Госстандарт России, 2000. – 11 с.
3. Прошкин Л. В. Ветеринарно-санитарная экспертиза и методы определения качества и безопасности колбасных изделий: автореф. дис. на соиск. уч. степени канд. вет. наук: спец. 06.02.05 “Ветеринарная санитария, экология, зоогигиена и ветеринарно-санитарная экспертиза” / Л. В. Прошкин. – СПб., 2011. – 30 с.
4. Мясо и мясные продукты. Определение массовой доли растительного (соевого белка) методом электрофореза: ГОСТ Р 53220-2008. – [Введён в действие 2010–01–01]. – М. : Стандартинформ, 2009. – 12 с.
5. ХЕМАтест “Соя” [Електронний ресурс]. – Режим доступу : URL : http://xematest.com/catalog/4/8/. – 4.06.2015 р.
6. García M.; Aleixandre, M.; Gutiérrez, J.; Horrillo, M. C. Electronic nose for ham discrimination. Sens. Actuators B. – 2006. – Vol. 114. – pp. 418-422.
7. Gonzalez-Martin, I.; Perez-Pavon, J. L.; Gonzalez-Perez, C.; Hernandez-Mendez, J.; Alvarez-Garcia, N. Differentiation of products derived from Iberian breed swine by electronic olfactometry (electronic nose) / // Anal. Chim. Acta. – 2000. – Vol. 424. – pp. 279-287.
8. Garcia M. Electronic nose for the identification of spoiled Iberian hams / M. Garcia, M. Aleixandre, M. C. Horrillo // Spanish Conference on Electron Devices, Tarragona, Spain; IEEE: New York. – 2005. – pp. 537-540.
9. Кучменко Т. А. Сравнительная оценка возможностей интегрального и дифференциального анализаторов газа типа “электронный нос” для исследования мясных продуктов / Т. А. Кучменко, Д.А. Погребная // Аналитика и контроль. – 2011. – Т. 15. – №3. – С. 313-323.
10. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat / [N. El. Barbri, E. Llobet, N. El Bari and other] // Sensors. – 2008. – No. 8. – pp. 142-156.
11. Assessment of meat freshness with metal oxide sensor microarray electronic nose: a practical approach / [V. Y. Musatov, V. V. Sysoev, M. Sommer, I. Kiselev] // Sensors and Actuators B: Chemical. – 2010. – Vol. 144. – pp. 99–103.
12. Hong X. Discrimination and prediction of multiple beef freshness indexes based on electronic nose / X. Hong, J. Wang, Z. Hai // Sensors and Actuators B: Chemical. – 2012. – Vol. 161. – pp. 381-389.
13. Determination of the Freshness of Beef Strip Loins (M. longissimus lumborum) Using Electronic Nose / Ye Xiao, Jin Jiaojiao, Hui Guohua, [and other] // Food Analytical Methods. – 2014. – No. 7 . – pp. 1612-1618.
14. Detection of rancidity in freeze stored turkey meat using a commercial gas-sensor array system / [J. E. Haugen, F. Lundby, J. P. Wold, A. Veberg] // Sensors and Actuators B: Chemical. – 2006. – Vol. 116. – pp. 78-84.
15. Russell T. A. Comparison of sensory properties of whey and soy protein concentrates and isolates: a thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science Department of Food Science. – Raleig. – 2004. – 132 p.
16. Boatright W. L. Headspace evaluation of methanethiol and dimethyl trisulfide in aqueous solutions of soy-protein isolates / W.L. Boatright, Q. Lei // Journal of food science: Food Chemistry and Toxicology. – 2000. – Vol. 65. – No. 5. – pp. 819-821.
17. Шпичка А. И. Сравнительная характеристика микроорганизмов, синтезирующих de novo летучие душистые вещества / А. И. Шпичка, Е. Ф. Семенова // Фундаментальные исследования. Биологические науки. – 2013. – №8. – С. 1113-1124.
18. Study of both Sunflower Oil and Its Headspace throughout the Oxidation Process. Occurrence in the Headspace of Toxic Oxygenated Aldehydes / [Maria D. Guillen, Nerea Cabo, Maria L. Ibargoitia, Ainhoa Ruiz] // Journal of Agricultural Food Chemistry. – 2005. – Vol. 53. – pp. 1093-1101.
19. Ross C. F. Use of volatiles as indicators of lipid oxidation in muscle foods / Carolyn F. Ross, Denise M. Smith // Comprehensive reviews in food science and food safety. – 2006. – Vol. 5. – pp. 18-25.
20. Петибская В. С. Соя: химический состав и использование / [под ред. В. М. Лукомца]. – Майкоп : ОАО “Полиграф-ЮГ”, 2012. – С. 213-224.
21. Витенберг А. Г. Статистический парофазный газохроматографический анализ. Физико-химические основы и области применения / А. Г. Витенберг // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д. И. Менделеева). – 2003. – Т. XLVII. – № 1. – С. 7-22.
22. Дворкин В. И. Метрология и обеспечение качества количественного химического анализа / В. И. Дворкин. – М. : Химия, 2001. – 263 с.
23. Pushkarova Ya. The classification of solvents based on solvatochromic characteristics: the choice of optimal parameters for artificial neural networks / Ya. Pushkarova, Yu. Kholin // Central European Journal of Chemistry. – 2012. – Vol. 10. – No. 4. – pp. 1318-1327.