Abstract
Cluster analysis as a multidimensional statistical procedure that collects data that contain information about a sample of objects, allowing to organize and to systematize the studied objects and to form them into relatively homogeneous groups (clusters). The task of cluster analysis is to find groups as well as relevant objects in the sample. To determine the competitiveness of the tourist organization, we propose an algorithm that covers the activities of the tourist organization (firm) in the entire tourist market or in its individual segments. To make calculations, it is proposed to use a system of indicators of business activity and efficiency of the travel agency. From these positions the system of indicators developed by authors is offered, namely: on a tourist product; at the price of a tourist product; indicators that characterize the sale and promotion of tourism products (services) in the market segment; financial indicators. The method of developing a matrix of group ranking of competing travel companies is described. The results of the study show that the application of a cluster approach to determining the competitiveness of tour operators can significantly increase the effectiveness of their analysis. Cluster methods of determining competitiveness, in our opinion, have prospects in the marketing research of the tourism sector. When analyzing the state and prospects of development of the tourist and recreational sphere, it is advisable to use these methods in the marketing assessment of the competitiveness of individual tourist organizations, when other traditional methods of analysis do not provide sufficiently reliable accuracy. It is determined that the improvement of cluster analysis methodology in the field of tourism is an important area for further researches.
References
Porter M. E. Competitive Strategy: Techniques for Analyzing Industries and Competitors. New York: Free Press, 1998. 396 p.
Лужанська Т. Ю., Костенко С. А., Катц Е. Б., Будкевич Г. Б. Оцінка та напрямки удосконалення конкурентоспроможності туристичних підприємств. Економічний форум. 2015. № 4. C. 258-267.
Ольшанський О. В. Заходи з підвищення конкурентоспроможності підприємств туристичного профілю. Економічна стратегія і перспективи розвитку сфери торгівлі та послуг. 2013. Вип. 1 (17). Ч. 1. С. 291-297.
Ткаченко Т. І. Конкурентоспроможність в туризмі як провідний напрям сталого розвитку. Науково-інформаційний вісник Академії наук вищої освіти України. 2012. № 2 (79). С. 96-104.
Тymchuk S. V., Neshchadym L. M. Cluster Analysis of the Effectiveness of Tourist Companies in Ukraine. Науковий вісник Ужгородського національного університету. 2017. Вип. 15. Ч. 2. С. 136-141.
Chalupa P., Prokop M., Rux J. Use of Cluster Analysis for Classification of Tourism Potential. Littera Scripta. 2013. Vol. 6 (2). Pp. 59-68. URL: https://littera-scripta.com/wp-content/uploads/2019/05/Rux-Use_of_cluster_analzsis_for_ classification_of_tourism_potential1.pdf.
Estivill-Castro V. Why so Many Clustering Algorithms – a Position Paper. ACM SIGKDD Explorations Newsletter. 2002. Vol. 4 (1). Pp. 65-75. DOI: 10.1145/568574.568575.S2CID 7329935.
Porter, M. E. (1998), Competitive Strategy: Techniques for Analyzing Industries and Competitors, Free Press, New York, 396 p.
Luzhanska, T. Yu., Kostenko, S. A., Katts, E. B. & Budkevych, H. B. (2015), “Assessment and directions for improving the competitiveness of tourist enterprises”, Ekonomichnyy forum, vol. 4, pp. 258-267.
Olshanskyy, O. V. (2013), “Measures to increase the competitiveness of tourism enterprises”, Ekonomichna stratehiya i perspektyvy rozvytku sfery torhivli ta posluh, vol. 1 (17), pp. 291-297.
Tkachenko, T. I. (2012), “Competitiveness in tourism as a leading direction of sustainable development”, Naukovo-informatsiynyy visnyk Akademiyi nauk vyshchoyi osvity Ukrayiny, vol. 2 (79), pp. 96-104.
Тymchuk, S. V. & Neshchadym, L. M. (2017), Cluster Analysis of the Effectiveness of Tourist Companies in Ukraine, Naukovyy visnyk Uzhhorodskoho natsionalʹnoho universytetu, vol. 15 (2), pp. 136-141.
Chalupa, P., Prokop, M. & Rux, J. (2013), Use of Cluster Analysis for Classification of Tourism Potential, Littera Scripta, vol. 6 (2), pp. 59-68, available at: https://littera-scripta.com/wp-content/uploads/2019/05/Rux-Use_of_cluster_analzsis_for_ classification_of_tourism_potential1.pdf.
Estivill-Castro, V. (2002), Why so Many Clustering Algorithms – a Position Paper, ACM SIGKDD Explorations Newsletter, vol. 4 (1), pp. 65-75. DOI: 10.1145/568574.568575.S2CID 7329935.